Luyện thi - THCS

Showing 1–6 of 26 results

6
Placeholder

Luyện thi - THCS

Về bài toán Hình học tS 10 TP HCM 2025

Cho biết đường tròn có bán kính $R$ và $AO=2R$. Hãy tính chu vi và diện tích tam giác $HED$.     Bài giải dưới đây theo phong cách HSG MTCT THCS và ta có nhận xét tam giác $ABC$ là tam giác đều, góc $\widehat{AOB}=60^\circ$ và $\sin 120^\circ=\sin 60^\circ=\dfrac{\sqrt3}{2}$ (trong khả năng của HSG …
Placeholder

Luyện thi - THCS

Về bài toán Hòa và Bình

Đặt vấn đề: Bài 6 trong bài thi tuyển sinh 10 TP Hồ Chí Minh năm 2025 học sinh khá và giỏi sẽ dẫn đến phương trình $$\dfrac{3a-\sqrt{1-a^2}}{a+\sqrt{1-a^2}}=\dfrac{4a+0,4}{4a-0,4}$$ Vấn đề là làm sao giải phương trình này với học lực của học sinh.     Học sinh giỏi: Ta nhận thấy tử là mẫu giống …
Placeholder

Luyện thi - THCS

Sử dụng tính năng FUNCTION cho Học sinh lớp 9

Bài toán. Theo kế hoạch, một tổ trong xưởng may phải may xong 9100 chiếc khẩu trang trong một thời gian quy định. Do tình hình dịch bệnh Covid-19 diễn biến phức tạp, tổ đã quyết định tăng năng suất nên mỗi ngày tổ đã may được nhiều hơn 100 chiếc khẩu trang so với …
Placeholder

Luyện thi - THCS

Một cách khác giải bài toán phương trình bậc 2 TS 10 Đà nẵng

Đề bài. Cho phương trình $x^2+2(m+1)x+6m-4=0$. Tìm tất cả giá trị của $m$ để phương trình có hai nghiệm $x_1, x_2$ thoả mãn $(4x_1-2mx_1-6m+13)x_2^2-24x_1-100=0$. Sở dĩ gọi là “cách khác” vì nhiều thầy cô đã khéo léo biến đổi biểu thức $$x_1^2+2mx_1+x_1+6m-4=0 ⇔ -2mx_1-6m=x_1^2+2x_1-4 ⇒ 4x_1-2mx_1-6m+13=(x_1+3)^2$$ Bài giải dưới đây coi như một kênh tham …
Placeholder

Luyện thi - THCS

Dựa vào BĐT cơ bản để CM 1 bất đẳng thức mới

  BĐT cơ bản 1. Cho $a, b,c $ tuỳ ý, ta có các bất đẳng thức cơ bản sau đây: $\left\lbrace\begin{array}{l}a^2+b^2\geqslant 2ab\\ b^2+c^2\geqslant 2bc\\ c^2+a^2\geqslant 2ca\end{array} \right.$ $⇒ a^2+b^2+c^2\geqslant ab+bc+ca$ BĐT cơ bản 2. Với $a, b, c$ tuỳ ý ta có:   $(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca) \geqslant 3(ab+bc+ca)$.   Ngoài ra:   $(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)\leqslant 3(a^2+b^2+c^2)$. Vậy: $$3(ab+bc+ca)\leqslant …
Placeholder

Luyện thi - THCS

Bài toán HH TS 10 PTNK (câu 3)

    Tứ giác $ABED$ nội tiếp đường tròn, hai đường chéo giao nhau tại $I$ ta suy ra hai cặp tam giác sau đây đồng dạng:   $\Delta IAB \backsim \Delta IDE ⇒ \dfrac{AB}{DE}=\dfrac{IB}{IE} \quad (5)$ $\Delta IAD \backsim \Delta IBE ⇒ \dfrac{AD}{BE}=\dfrac{ID}{IE}\quad (6)$   Chia (5) cho (6) ta có: $\dfrac{AB}{DE} \div \dfrac{AD}{BE} …
Placeholder

Luyện thi - THCS

Về bài toán Hình học tS 10 TP HCM 2025

Cho biết đường tròn có bán kính $R$ và $AO=2R$. Hãy tính chu vi và diện tích tam giác $HED$.     Bài giải dưới đây theo phong cách HSG MTCT THCS và ta có nhận xét tam giác $ABC$ là tam giác đều, góc $\widehat{AOB}=60^\circ$ và $\sin 120^\circ=\sin 60^\circ=\dfrac{\sqrt3}{2}$ (trong khả năng của HSG …
Placeholder

Luyện thi - THCS

Về bài toán Hòa và Bình

Đặt vấn đề: Bài 6 trong bài thi tuyển sinh 10 TP Hồ Chí Minh năm 2025 học sinh khá và giỏi sẽ dẫn đến phương trình $$\dfrac{3a-\sqrt{1-a^2}}{a+\sqrt{1-a^2}}=\dfrac{4a+0,4}{4a-0,4}$$ Vấn đề là làm sao giải phương trình này với học lực của học sinh.     Học sinh giỏi: Ta nhận thấy tử là mẫu giống …
Placeholder

Luyện thi - THCS

Sử dụng tính năng FUNCTION cho Học sinh lớp 9

Bài toán. Theo kế hoạch, một tổ trong xưởng may phải may xong 9100 chiếc khẩu trang trong một thời gian quy định. Do tình hình dịch bệnh Covid-19 diễn biến phức tạp, tổ đã quyết định tăng năng suất nên mỗi ngày tổ đã may được nhiều hơn 100 chiếc khẩu trang so với …
Placeholder

Luyện thi - THCS

Một cách khác giải bài toán phương trình bậc 2 TS 10 Đà nẵng

Đề bài. Cho phương trình $x^2+2(m+1)x+6m-4=0$. Tìm tất cả giá trị của $m$ để phương trình có hai nghiệm $x_1, x_2$ thoả mãn $(4x_1-2mx_1-6m+13)x_2^2-24x_1-100=0$. Sở dĩ gọi là “cách khác” vì nhiều thầy cô đã khéo léo biến đổi biểu thức $$x_1^2+2mx_1+x_1+6m-4=0 ⇔ -2mx_1-6m=x_1^2+2x_1-4 ⇒ 4x_1-2mx_1-6m+13=(x_1+3)^2$$ Bài giải dưới đây coi như một kênh tham …
Placeholder

Luyện thi - THCS

Dựa vào BĐT cơ bản để CM 1 bất đẳng thức mới

  BĐT cơ bản 1. Cho $a, b,c $ tuỳ ý, ta có các bất đẳng thức cơ bản sau đây: $\left\lbrace\begin{array}{l}a^2+b^2\geqslant 2ab\\ b^2+c^2\geqslant 2bc\\ c^2+a^2\geqslant 2ca\end{array} \right.$ $⇒ a^2+b^2+c^2\geqslant ab+bc+ca$ BĐT cơ bản 2. Với $a, b, c$ tuỳ ý ta có:   $(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca) \geqslant 3(ab+bc+ca)$.   Ngoài ra:   $(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)\leqslant 3(a^2+b^2+c^2)$. Vậy: $$3(ab+bc+ca)\leqslant …
Placeholder

Luyện thi - THCS

Bài toán HH TS 10 PTNK (câu 3)

    Tứ giác $ABED$ nội tiếp đường tròn, hai đường chéo giao nhau tại $I$ ta suy ra hai cặp tam giác sau đây đồng dạng:   $\Delta IAB \backsim \Delta IDE ⇒ \dfrac{AB}{DE}=\dfrac{IB}{IE} \quad (5)$ $\Delta IAD \backsim \Delta IBE ⇒ \dfrac{AD}{BE}=\dfrac{ID}{IE}\quad (6)$   Chia (5) cho (6) ta có: $\dfrac{AB}{DE} \div \dfrac{AD}{BE} …